A prototype Web-based implementation of the QEST model

Alain Abran¹, Martin Kunz², Reiner R. Dumke², Luigi Buglione¹³
¹ École de Technologie Supérieure - ETS
1100 Notre-Dame Ouest,
Montréal, Canada H3C 1K3
aabran@ele.etsmtl.ca

² Department of Computer Science
Institute for Distributed Systems
AG Software-Engineering
Otto-von-Guericke University
Magdeburg – GERMANY
makunz@cs.uni-magdeburg.de
dumke@ivs.cs.uni-magdeburg.de

³ SchlumbergerSema
Via R.Morandi 32
I-00050 Rome - ITALY
lbuglione@slb.com

Abstract: This paper presents and describes a Web-based implementation of a three-dimensional software quality measurement model. The implementation is based on the 2003 version of the ISO quality model for software products: ISO 9126. The prototype presented includes all the 120+ measures proposed in the ISO standard, as well as weight assignments, target values, current project values and automated calculations for a three dimensional representation of quality performance, based on the geometrical tetrahedron formula of the QEST model.

Keywords: ISO 9126, QEST model, software quality measurement, Web-based quality model.

1 Introduction

Over the past thirty years, measurement of the quality of software products has been fraught with difficulties. The first is related to the nature of software, which is a complex intellectual artifact developed through successive iterations and phases until deployed and used in a variety of organizational and industrial contexts.

A second difficulty arises from the variety of quality models (such as the ones proposed by McCall, Boehm and Dromey [8, 9, 10]) which have not received subsequent continuous investment necessary to adapt them to the rapidly evolving world of software development and to generate the corresponding measurement instruments.
A third difficulty is the lack of tools in the software engineering community to represent quantitatively and in a consolidated manner the many possible quality viewpoints, while at the same time keeping track of the value of individual views on quality.

Finally, there is a fourth difficulty which is related to the largely paper-based measurement process software engineers working in highly tool-based environments must undergo, given that these engineers are culturally averse to such paper-based processes.

Over the past decade, the ISO/IEC Joint Technical Committee (JTC1), Subcommittee 7 (SC7) on Systems and Software Engineering, has invested significantly in tackling the first two of these difficulties through years of collaboration at the international level. Finally, in 2003, the ISO succeeded in publishing a coherent and fairly comprehensive set of quality standards, including multiple related quality models supported by detailed measurement methods and procedures applicable throughout the full development process (ISO 9126). Meanwhile, other researchers tackled the third difficulty of designing multidimensional models of quality, such as the QEST model, which was developed to represent multiple views of quality [1,2] and which is used in conjunction with the ISO model [11].

The scope of this paper is to report on the work carried out in the design of a Web-based prototype to address the problems associated with the previously paper-based measurement process. Section 2 presents an overview of the ISO 9126 model of quality; section 3, the structure of the QEST model; and section 4, the prototype developed for a Web-based implementation of ISO 9126 with multidimensional representation of quality using the QEST model approach. Finally, in section 5, conclusions and prospects for future work are presented.

2 ISO model for software product quality

The ISO has developed a set of quality standards, ISO 9126, covering the full development process [4,5,6,7]. These standards take into account the initial quality requirements addressed during each of the development phases, thereby allowing the planning, design, monitoring and control of quality.

Software product quality can then be evaluated by measuring the internal attributes of the product (typically using static measures of intermediate products), its external attributes (typically by measuring the behavior of the code when executed) and its quality-in-use attributes. The objective is to achieve the required functional effects of the product in a particular context of use. In order to produce these effects, the quality of the software product has to be measured and evaluated during all its lifecycle phases (Figure 1).
Moreover, the proper quality measurement and evaluation methodologies have to be present and applied. This ISO 9126 series of standards offers both ISO recognized quality models and corresponding measurements together with measurement scales and methods.

3 The structure of the QEST model

QEST (Quality factor + Economic, Social and Technical dimensions)[1] is a multidimensional software quality measurement model. It provides a multidimensional structured shell, which can then be filled according to management objectives for any specific project: it is therefore referred to as an open model. With this topology of quality models, it is possible to handle multiple and distinct viewpoints, all of which can exist concurrently in any software project.

The QEST model integrates into a single representation the following three dimensions:

- the Economic one, represented by the managers’ perspective;
- the Social one, represented by the users’ perspective;
- the Technical one, represented by the developers’ perspective.

The essential purpose of the open model is to express quality through a combination of the specific measures (or sets of measures) selected for each of the three dimensions. A three-dimensional geometrical representation, the tetrahedron, was selected as the basis of the model, as illustrated in Figure 2:
The three dimensions (E, S, T) in the space correspond to the pyramid's base corners, while the convergence of the sides, the P vertex, describes the top quality level. When the three sides are of equal length, the solid shape that represents this three-dimensional concept is therefore a pyramid with its triangular base and sides of equal length (a tetrahedron).

This pyramid-type representation imposes the following constraint: the sides must be equal. This is achieved through giving equal weights to each of the three different dimensions chosen and having sides of length and exactly equal to 1 (a regular tetrahedron); in this way, the dimensions are represented through a normalized value between 0 and 1 for each of them on a ratio scale.

For any specific project, the value on each dimension is given by the weighted sum of a list of n normalized measures having been selected as representative of each of the three viewpoints. The values of the three dimensions shown in Figure 2, referred as (Qe,Qs,Qt), each placed on its own side of the tetrahedron, describe a sloped plane section in the space and return the three-dimensional measurement values.

The tetrahedron supplies several performance indices:

- the **distance** between the tetrahedron base and the plane – the greater the distance, the higher the quality level
- the **area** of the sloped plane section- the smaller the area, the higher the quality level
- the **volume** of the lower part of the truncated tetrahedron – the greater the volume, the higher the quality level

The slope angle of the area indicates whether or not a dimension is significantly better or worse than the other two. The theoretical foundation and the mathematical formulas of the QEST model are described in [1,3], and the implementation procedures of this model are presented in [2].
4 The prototype

Development of the Web-based prototype for software product quality measurement is a joint initiative of the École de Technologie Supérieure in Canada and the Otto-von-Guericke University in Magdeburg, Germany. More specifically, the prototype provides a software tool-based environment for the use of the ISO 9126 quality models with the QEST multidimensional representation of software quality measurement.

The program is implemented in Java™ 1.4.1 as an applet, making it possible to run the prototype in every Web browser with the Java Runtime Environment 1.4.1.

The most relevant steps and features of this Web-based prototype are presented below.

4.1 Step 1: Selection and weighting of metrics from three viewpoints

For any software project, selection of the project-relevant ISO 9126 quality models, characteristics, sub-characteristics and sets of metrics is facilitated by the prototype, which imbeds the full content of these four parts of ISO 9126 into a single tree structure (Figure 3). Furthermore, the Web-based prototype makes it possible to take into account up to three viewpoints and to assign the corresponding viewpoint weights for each level of selection (quality models, quality characteristics and quality sub-characteristics).

For ease of use, the prototype provides the documentation on every ISO 9126 tree element in a browser window, and every window is implemented with one htm file for every node of the tree displayed.
The prototype provides the possibility of inputting three values for every node of the 9126 quality tree, one for each viewpoint. Every metric with a weight greater than zero within a viewpoint dimension is selected for this specific measurement viewpoint only (Figure 4).

In the example in Figure 4, the usability quality characteristic has been selected for the “E” and “T” viewpoints, with weights equal to 0.5 and 0.3 respectively. The user has to input percentage weights on a normalized scale between 0 and 1.
As well, the user must spread these weights uniformly among the “sons” of a single selected node. All the selected nodes deliver a sub-tree with the corresponding path from the selected metrics to the root. The weighting in Figure 4 means that the usability node will take into account the “E” sub-tree with a value of 0.5 and in the “T” sub-tree with a value of 0.3.

The tree in Figure 5 shows the instantiation of a selection from a single viewpoint. Following selection and weighting of metrics, the prototype builds up to three independent sub-trees, one for each viewpoint.

Figure 5: A tree of selected and weighted nodes

The usability node is not part of the “S” sub-tree because it was not selected for this viewpoint.

After the user has selected and weighted the nodes, the prototype verifies whether or not there is any node with a value higher than 1, or if there are any brothers with a sum over 1 or less than 1. Because the highest weight is 1, the weight is 100% for this node and the sum of the weights for the sons of one selected node must be exactly 1.

4.2 **Step 2: Assignment of threshold values**

Upon completion of the selection, the project threshold values (the min and the max for a specific metric) must be entered through the data collection window (Figure 6). These threshold values are usually selected before project initiation, and can be specified either for a particular project, or selected from the documentation of corresponding metrics in [4-7].

4.3 **Step 3: Data collection of project data**

Throughout the project lifecycle, the Web-based prototype can be used to enter project data, again through the data collection window (Figure 6). It should be
noted that the data inputted are in the scale used and defined by the data collector, and within the threshold intervals determined in Step 2.

It is then up to the prototype to normalize these data values, using the min and max thresholds. Such normalization is required to represent the multiple viewpoints through a regular, geometrical, three-dimensional representation. Each normalized value is immediately displayed in the last column of Figure 6. Subsequently, the prototype takes these input data into the weighted ISO 9126 tree and consolidates them for each viewpoint selected. Once it has derived the values for the E, S and T viewpoints, the prototype calculates the three quality performance indices, using the QEST formulas.

4.4 Step 4: 3-D view of quality

Figure 7: Tetrahedron with the sloped plane section, results and performance indices
In Step 4, the prototype displays a 3-dimensional representation of the quality associated with the software product being measured and assessed. As described, this 3-D representation is expressed in the form of a tetrahedron (Figure 7), where the sloped plane section displayed yields the quality achieved at the time of project evaluation for each of the three viewpoints. In addition, the prototype presents, in a side window, the three geometrical measures of quality performance, through the distance of the plane from the zero level, the slope of the plane indicating whether or not quality is progressing equally for each viewpoint, and the overall quality achieved through either a two-dimensional index (the surface of the slope) or a three-dimensional index (the volume of the tetrahedron below the plane in Figure 8).

![Figure 8: Solid shape of the lower part](image)

The prototype provides additional technical features, such as rotation of the 3-D tetrahedron, either to display only the lower part or to display the tetrahedron as a solid, which make it easier for some users to grasp the multidimensional perspective of quality within ISO 9126.

5 Conclusions & Prospects

This Web-based 3-dimensional implementation of the ISO 9126 quality model of software products is now fully operational in a laboratory environment. Tests are being carried out to analyze usability prior to its deployment in an industrial context. Preliminary feedback has suggested some required refinements. For instance, the current implementation requires that each data entry screen be filled out in sequence, whether or not an individual has the responsibility for only a sub-set in a decentralized environment. The current version of the prototype therefore works better when the measurement function is highly centralized under the control of a single metrics manager who enters the selection and the weighting himself and performs the data entry function for everyone else. The next version should offer optional data entry paths which are
better adapted to distinct and more limited data measurement responsibilities, such as are often found in decentralized development environments.

A subsequent improvement will be the development of a data repository in which to store the data from many projects and to provide such data to the visualization tool.

As an additional feature, min and max could be provided by the data repository, and all project data (weights and selected nodes) could be stored in the database, too. This would make it possible for people who are widely spaced geographically to provide data on quality for a team assessment of their software project.

Acknowledgments

The authors would like to thank René Köppel and René Braungarten for their assistance in the development of the first prototype. This work has been supported by the following organizations: École de technologie supérieure (in Montreal, Québec, Canada) and Otto-von-Guericke University (in Magdeburg, Germany).

References

